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Deep (artificial) neural networks
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DNN’s Computational Efficiency Problem

Training Image recognition model
Dataset: ImageNet-22K
Network: ResNet-101

256 GPUs
7 hours
4 GPUs ~450kWh
16 days
~385 kWh
For reference: 1 model training run is

Approx. 2 weeks of home energy consumption
https://arxiv.org/abs/1708.02188

= Deep learning is computationally intensive
= Time consuming even with high-performance computing resources
= Power consumption prohibitive for applicability in domains such as loT



Key driver for innovations in computing systems

General purpose Conventional digital Non-von Neumann accelerators with
computing systems accelerators post-CMOS devices
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In-memory computing

= Perform “certain” computational tasks
in place in memory

= Achieved by exploiting the physical
attributes of memory devices

= Can we viewed as a sub-category of
processing in memory (PIM) or
compute in memory (CIM)

= At no point during computation, the
memory content is read back and
processed at the granularity of a single
memory element

nature FOCUS | REVIEW ARTICLE

https://doi.org/10.1038/541565-020-0655-z

nanotechnology

M) Check for updates.

Memory devices and applications for in-memory
computing

Abu Sebastian® *, Manuel Le Gallo®, Riduan Khaddam-Aljameh and Evangelos Eleftheriou
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Phase-change memory

Commonly used phase change materials
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Wuttig & Yamada, Nature Materials (2007)
Burr et al., JETCAS (2016)

= A nanometric volume of phase change
material between two electrodes
= “\WRITE” Process

— By applying a voltage pulse the material

can be changed from crystalline phase
(SET) to amorphous phase (RESET)
= “READ” process
- Low-field electrical resistance

Amorphous Crystalline
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Le Gallo & Sebastian, An overview of phase-change
memory device physics, J. Phys. D: Appl. Phys.



Analog storage and accumulation behavior
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Sebastian et al., J. Appl. Phys. (2018)

m Can achieve a continuum of conductance states
= A non-volatile integrator of pulses
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Phase-change synapses

Synaptic efficacy (Inference) Synaptic plasticity (Training)
Analog Storage Accumulation behavior
(Ohm’s law and Kirchhoff’s circuit law) (PCM crystallization dynamics)

kstsynaptic neurons

Sebastian et al., “Brain-inspired computing using phase-change memory devices”, J. Appl. Phys. (2018)




DNN inference with in-memory computing
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Sebastian et al., VLSI (2019), Tsai et al., J. Phys. D: Appl. Phys. (2018)

The trained synaptic weights are mapped to an array of computational memory cores performing
matrix vector multiply operations corresponding to each layer



DNN inference with in-memory computing
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DNN training with in-memory computing

Apply acc. pulses sporadically & blindly!
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Nandakumar et al., ArXiv, 2017
Sebastian et al., VLSI, 2019



DNN training with in-memory computing
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https://analog-ai-demo.mybluemix.net

= Each synaptic weight mapped to two PCM devices (~400,000 PCM ey ot __
= Comparable test accuracy as FP32 training
= Negligible accuracy drop during inference after training

Nandakumar et al., “Mixed-precision deep learning based on computational memory”, Front. Neuroscience (2020)


https://analog-ai-demo.mybluemix.net/

Architecture of an IMC-based accelerator
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= Mixed-signal in-memory compute cores and system Eleftheriou et al., IBM JRD (2019),
integration Dazzi et al., MLSys Workshop @NeurlPS (2019)
Boybat et al., Nature Comm. (2018)
Khaddam-Aljameh et al., Proc. VLSI (2021)



Hermes: IMC compute core in 14nm CMOS technology
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PCM devices integrated in the back-end of 14nm CMOS chip
Compact current controlled oscillator-based ADCs

Local digital processing

MVM performance: 10.5 TOPS/W and 16.5 TOPS/W/sg.mm.

Khaddam-Aljameh et al., Proc. VLSI (2021) (highlight paper)



Towards higher precision: Projected memory

3

During write

During read

current
3
-
W]
_|

N

~

Computed b; value

e Proj-PCM

» 8-bit fixed point

— Double precision

1 2 3
Exact b, value

—

read write

RcrysT << Rproy
Ramor >> Rproy

Ramor.oN << Rproy

Modified PCM device concept
Exploits the I-V characteristic of phase change materials

Substantially lower drift and conductance fluctuations arising from 1/f noise
= Precision equal to 8-bit fixed-point arithmetic

Kim et al., Proc. IEDM (2013), Koelmans et al., Nature Comm. (2015), Giannopoulos et al., IEDM (2018)
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Towards higher speed: Photonic in-memory computing
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Feldmann et al., Parallel convolution processing using an integrated photonic tensor core, Nature (2021)
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* Applications beyond conventional DL
— DNN + “something”
— Spiking deep neural networks



Hardware lottery

Most of the algorithmic components for DNNs were in place decades earlier
— Backprop (1963, 1976, 1988 (Rummelhart et al.)
— CNNs (Fukushima & Miyake, 1982, LeCun et al., 1989)

Several decades lost due to the lack of adequate hardware

We need to ensure that good ideas are not lost or delayed this way

What is next in deep learning?

What role can IMC play going forward?

Hooker et al., The hardware lottery, ArXiv, 2020



The deep learning landscape

Computer vision
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DNNs + “something”

Neural network controller
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Graves et al., Neural Turing machines (2014)

Hassabis et al., Neuroscience-inspired Al (2017)

More biologically plausible DNNs
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Pfeiffer and Pfeil, Deep learning with spiking
neurons: Opportunities and challenges (2018)
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DNN + Explicit HD associative memory
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= Recent work on realizing explicit memory in terms of high
. . Mimicking the brain: Deep learning
dimensional vectors meets vector-symbolic AI
= Powerful tool for few-shot learning

To better simulate how the human brain makes decisions, we've

= High-dimensional algebraic operations for variable binding? rombinecihe sirengihs ofsymbolie Aland nerinetwors

Abbas Rahimi & Abu Sebastian, IBM

Research Blog
Karunaratne et al., “Robust high-dimensional memory-augmented neural networks”, Nature Comm. (2021)



Efficient realization using IMC
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Attention Vector Karunaratne et al., “In-memory

hyperdimensional computing”,

Karunaratne et al., “Robust high-dimensional memory-augmented Nature Electronics (2020)

neural networks”, Nature Comm. (2021)
= The high-dimensional explicit memory content (support vectors) stored in a PCM crossbar array
= The similarity between the input query vectors and support vectors computed through in-memory
dot product operations



Spiking Neural Networks (SNNs)

Conventional Neural Networks

Information transmitted as floating point numbers!
Neuron

@ Synapse :

) ) . Scalar multiply units
Static non-linear functions

Neuronal dynamics

Information transmitted in terms of spikes (rate, timing

du/dt = F(u) + G(u)l

etc Action

potential

Post-synaptic neuron Action
potentiall

‘/\[ = Asynchronous
" Local, event-based learning

Dendrites

= Employed by the brain
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Synaptic dynamics
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Synapse
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Why SNNs?

= Asynchronous processing (Energy efficiency)
= Temporal codes (Ultra-low latency)
= Local event-based learning (Energy efficiency)

= Synaptic dynamics (Computational
superiority in specific Al tasks?)

Pfeiffer and Pfeil, Front. Neuroscience (2018)
Rajendran, Sebastian et al., IEEE SP Magazine (2019)
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Courtesy: Prof. Simon Thorpe




Inference in Dynamically Changing Environments

No Unsupervised Yes
100 - No Single epoch Yes
No Event-based Yes
| No Local learning Yes
95 - No Bio-plausible Yes
No |Generalizing to video| Yes

90 - 990'089 | Training set size 60'000

85 -

Classification accuracy (%)
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= Demonstration of an SNN surpassing ANNs in a
specific task

= Purely neuromorphic and biologically modeled

= Cortical-like circuits can perform Bayesian
inference on dynamic environments

RNN CNN
Type of network

MLP LSTM

SNN

Moraitis, Sebastian, Eleftheriou, Short-term synaptic plasticity optimally models continuous environments, ArXiv (2020)



IMC for SNNs

Weighted connections
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= |[MC-based DNN acceleration can be easily extended
to Spiking Neural Networks

= Synaptic efficacy and plasticity efficiently realized
with physically instantiated synaptic arrays

= Potential to implement even more intricate synaptic
dynamics and update rules

Output image

Audio input

Time (s)

Nandakumar et al., “Experimental demonstration of
supervised learning in spiking neural networks with
phase-change memory synapses”, Sci. Report, 2020

Wozniak et al., “Deep learning incorporating biologically
inspired neural dynamics and in-memory computing”,
Nature Machine Intelligence, 2020

Moraitis et al., “Short-term synaptic plasticity optimally
models continuous environments”, ArXiv, 2020



Summary

" Deep learning is a key driver for innovations in computing systems

= New forms of computing such as in-memory computing (IMC) are being explored

= Attributes such as synaptic efficacy and plasticity can be implemented in-memory by
exploiting the physical attributes of memory devices such as phase-change memory

" [so-accuracy DNN inference and training is possible with IMC

= Recently fabricated mixed-signal IMC cores demonstrate the promise of this
technology

= Concepts such as projected memory and photonic in-memory computing could
significantly improve the computational precision and performance

" The IMC approach could also impact applications that transcend conventional DL such
as memory-augmented neural networks and spiking neural networks
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