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Deep (artificial) neural networks
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DNNs meet the IT revolution 

Mainstay of the AI portfolio of 
almost all IT companies

Translation

Search ranking

News feed

Face recognition

Content understanding

McCulloch-Pitts Neuron (1943)

Multi-layer perceptrons
Abu Sebastian, IBM Research - Zurich



DNN’s Computational Efficiency Problem
Training Image recognition model

Dataset:  ImageNet-22K
Network:  ResNet-101

256 GPUs
7 hours
~450kWh4 GPUs

16 days
~385 kWh

For reference:  1 model training run is 
Approx. 2 weeks of home energy consumption

https://arxiv.org/abs/1708.02188

▪ Deep learning is computationally intensive
▪ Time consuming even with high-performance computing resources

▪ Power consumption prohibitive for applicability in domains such as IoT

Abu Sebastian, IBM Research - Zurich



Key driver for innovations in computing systems
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MEMORY (e.g. DRAM) 

(volatile, fast)

STORAGE 

(e.g. Flash, HDD) 

(nonvolatile, slow)

STORAGE-CLASS 

MEMORY

NEAR MEMORY 

COMPUTING

CPU

Non-von Neumann accelerators with 
post-CMOS devices

General purpose 
computing systems

GPUs, TPUs, 

Graphcore, Inferentia, 

Kunlun, Hanguang etc.

High-bandwidth 

memory

Conventional digital 
accelerators
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In-memory computing

▪ Perform “certain” computational tasks 
in place in memory

▪ Achieved by exploiting the physical 
attributes of memory devices

▪ Can we viewed as a sub-category of 
processing in memory (PIM) or 
compute in memory (CIM)

▪ At no point during computation, the 
memory content is read back and 
processed at the granularity of a single 
memory element
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Phase-change memory
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Commonly used phase change materials

Wuttig & Yamada, Nature Materials (2007)
Burr et al., JETCAS (2016)

SET

RESET

▪ A nanometric volume of phase change 
material between two electrodes

▪ “WRITE” Process 
− By applying a voltage pulse the material 

can be changed from crystalline phase 
(SET) to amorphous phase (RESET) 

▪ “READ” process
− Low-field electrical resistance Le Gallo & Sebastian, An overview of phase-change 

memory device physics, J. Phys. D: Appl. Phys.
Abu Sebastian, IBM Research - Zurich



Analog storage and accumulation behavior
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Sebastian et al., J. Appl. Phys. (2018)

▪ Can achieve a continuum of conductance states
▪ A non-volatile integrator of pulses

Pulses with different 
amplitudes

Repeated 
application of 

pulses with the 
same amplitude
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Phase-change synapses
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Synaptic efficacy (Inference) 
Analog Storage

(Ohm’s law and Kirchhoff’s circuit law)

P
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Postsynaptic neurons

Synaptic plasticity (Training)
Accumulation behavior

(PCM crystallization dynamics)

Sebastian et al., “Brain-inspired computing using phase-change memory devices”, J. Appl. Phys. (2018)
Abu Sebastian, IBM Research - Zurich



DNN inference with in-memory computing
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The trained synaptic weights are mapped to an array of computational memory cores performing 
matrix vector multiply operations corresponding to each layer

Sebastian et al., VLSI (2019), Tsai et al., J. Phys. D: Appl. Phys. (2018)

Abu Sebastian, IBM Research - Zurich



DNN inference with in-memory computing
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Joshi et al., “Accurate deep neural network inference using 
computational phase-change memory”, Nature Comm. (2020)

▪ Key challenge is the imprecision arising from 
conductance fluctuation, drift etc.

▪ A custom “additive noise training” procedure 
is essential to overcome this

▪ Experimental demonstration using PCM 
devices fabricated in 90nm CMOS technology

723,444 PCM devices (1T1R)

  
 

  
 

  
 

  
 

  
 

  
 

  
 

    

    

    

    

    

    

    

            

 
  
 
 
  
 
  
 
 
  
 
 
 
 
  
 
 
  
 
 

        

           

             

                  

              

         

              

         

              

         

   
  
  

   
  
  

   
 

  

   
  
  

   
  
  

   

  

  

   

  

  

   

  

  

       

              

   
  
  

   
  
  

   
  
  

   
  
  

   
  
  

   
  
  

     
              

                      

       

           

              

               

   

  

  

ResNet-32 on CIFAR-10> 10,000 devices
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Sebastian et al., VLSI, 2019

Forward propagation

7
Backward propagation:  this is a two!

7X
Backward propagation:  this is a two!

High Precision!

Non-ideal 

accumulative behaviorUpdate weights

High Precision!

Apply acc. pulses sporadically & blindly!

Nandakumar et al., ArXiv, 2017

DNN training with in-memory computing
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DNN training with in-memory computing
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▪ Each synaptic weight mapped to two PCM devices (~400,000 PCM 
devices)

▪ Comparable test accuracy as FP32 training
▪ Negligible accuracy drop during inference after training

https://analog-ai-demo.mybluemix.net

Nandakumar et al., “Mixed-precision deep learning based on computational memory”, Front. Neuroscience (2020)
Abu Sebastian, IBM Research - Zurich
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Architecture of an IMC-based accelerator
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Eleftheriou et al., IBM JRD (2019), 
Dazzi et al., MLSys Workshop @NeurIPS (2019)
Boybat et al., Nature Comm. (2018)
Khaddam-Aljameh et al., Proc. VLSI (2021)

https://www.research.ibm.com/artificial-

intelligence/ai-hardware-center/

▪ Mixed-signal in-memory compute cores and system 
integration

Abu Sebastian, IBM Research - Zurich



Hermes: IMC compute core in 14nm CMOS technology
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Khaddam-Aljameh et al., Proc. VLSI (2021) (highlight paper)

▪ 256x256 array of 8T4R unit cells
▪ PCM devices integrated in the back-end of 14nm CMOS chip
▪ Compact current controlled oscillator-based ADCs
▪ Local digital processing 
▪ MVM performance: 10.5 TOPS/W and 16.5 TOPS/W/sq.mm.

Abu Sebastian, IBM Research - Zurich



Towards higher precision: Projected memory
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Kim et al., Proc. IEDM (2013), Koelmans et al., Nature Comm. (2015), Giannopoulos et al., IEDM (2018)

▪ Modified PCM device concept
▪ Exploits the I-V characteristic of phase change materials
▪ Substantially lower drift and conductance fluctuations arising from 1/f noise
▪ Precision equal to 8-bit fixed-point arithmetic

Abu Sebastian, IBM Research - Zurich



Towards higher speed: Photonic in-memory computing
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Feldmann et al., Parallel convolution processing using an integrated photonic tensor core, Nature (2021)

Abu Sebastian, IBM Research - Zurich
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Hardware lottery

• Most of the algorithmic components for DNNs were in place decades earlier
‒ Backprop (1963, 1976, 1988 (Rummelhart et al.)

‒ CNNs (Fukushima & Miyake, 1982, LeCun et al., 1989)

• Several decades lost due to the lack of adequate hardware

• We need to ensure that good ideas are not lost or delayed this way

• What is next in deep learning?

• What role can IMC play going forward?

21

Hooker et al., The hardware lottery, ArXiv, 2020
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The deep learning landscape
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Computer vision

He et al, Deep residual learning for 
image recognition (2015)

Machine translation

Vaswani et al, Attention is all you need 
(2017)

Graves et al., Neural Turing machines (2014)

Hassabis et al., Neuroscience-inspired AI (2017)

DNNs + “something”

Pfeiffer and Pfeil, Deep learning with spiking 
neurons: Opportunities and challenges (2018)

More biologically plausible DNNs

Abu Sebastian, IBM Research - Zurich



DNN + Explicit HD associative memory
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Karunaratne et al., “Robust high-dimensional memory-augmented neural networks”, Nature Comm. (2021)

▪ Recent work on realizing explicit memory in terms of high 
dimensional vectors

▪ Powerful tool for few-shot learning
▪ High-dimensional algebraic operations for variable binding?
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Key Memory

DNN

HDC-conforming 

representations

Abbas Rahimi & Abu Sebastian, IBM 
Research Blog
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Efficient realization using IMC
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▪ The high-dimensional explicit memory content (support vectors) stored in a PCM crossbar array
▪ The similarity between the input query vectors and support vectors computed through in-memory 

dot product operations

Karunaratne et al., “In-memory 
hyperdimensional computing”, 

Nature Electronics (2020)
Karunaratne et al., “Robust high-dimensional memory-augmented 

neural networks”, Nature Comm. (2021)

Abu Sebastian, IBM Research - Zurich



Spiking Neural Networks (SNNs)
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Static non-linear functions

Information transmitted as floating point numbers!

Scalar multiply units

Neuron
Synapse

Conventional Neural Networks

▪ Asynchronous
▪ Local, event-based learning
▪ Employed by the brain

Synaptic dynamics

Neuronal dynamics
Information transmitted in terms of spikes (rate, timing 

etc.)

Abu Sebastian, IBM Research - Zurich



Why SNNs?
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▪ Asynchronous processing (Energy efficiency)

▪ Temporal codes (Ultra-low latency)

▪ Local event-based learning (Energy efficiency)

▪ Synaptic dynamics (Computational 
superiority in specific AI tasks?)

Pfeiffer and Pfeil, Front. Neuroscience (2018) 
Rajendran, Sebastian et al., IEEE SP Magazine (2019)

Courtesy: Prof. Simon Thorpe

Abu Sebastian, IBM Research - Zurich



Inference in Dynamically Changing Environments
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Occluded MNIST database

▪ Demonstration of an SNN surpassing ANNs in a 
specific task

▪ Purely neuromorphic and biologically modeled
▪ Cortical-like circuits can perform Bayesian 

inference on dynamic environments

Moraitis, Sebastian, Eleftheriou, Short-term synaptic plasticity optimally models continuous environments, ArXiv (2020)

Abu Sebastian, IBM Research - Zurich



IMC for SNNs
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Moraitis et al., “Short-term synaptic plasticity optimally 
models continuous environments”, ArXiv, 2020

▪ IMC-based DNN acceleration can be easily extended 
to Spiking Neural Networks

▪ Synaptic efficacy and plasticity efficiently realized 
with physically instantiated synaptic arrays

▪ Potential to implement even more intricate synaptic 
dynamics and update rules 

Nandakumar et al., “Experimental demonstration of 
supervised learning in spiking neural networks with 
phase-change memory synapses”, Sci. Report, 2020

Wozniak et al., “Deep learning incorporating biologically 
inspired neural dynamics and in-memory computing”, 

Nature Machine Intelligence, 2020
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Summary
▪ Deep learning is a key driver for innovations in computing systems

▪ New forms of computing such as in-memory computing (IMC) are being explored

▪ Attributes such as synaptic efficacy and plasticity can be implemented in-memory by 
exploiting the physical attributes of memory devices such as phase-change memory

▪ Iso-accuracy DNN inference and training is possible with IMC

▪ Recently fabricated mixed-signal IMC cores demonstrate the promise of this 
technology

▪ Concepts such as projected memory and photonic in-memory computing could 
significantly improve the computational precision and performance

▪ The IMC approach could also impact applications that transcend conventional DL such 
as memory-augmented neural networks and spiking neural networks

29Abu Sebastian, IBM Research - Zurich
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Analog 
AI Hardware 
Acceleration 
Toolkit

IBM Research AI Hardware Center  /  © 2020 IBM Corporation

https://analog-ai.mybluemix.net/

Current Capabilities Include:

• Simulate analog MVM operation 
including analog backward/update 
pass

• Simulate a wide range of analog AI 
devices and crossbar configurations 
by using abstract functional models 
of material characteristics with 
adjustable parameters

• Abstract device (update) models

• Analog friendly learning rule

• Hardware-aware training for 
inference capability

• Inference capability with drift and 
statistical (programming) noise 
models

Roadmap:

Integration of more simulator features in 
the PyTorch interface

Tools to improve inference accuracy by 
converting pre-trained models with 
hardware-aware training

Algorithmic tools to improve training 
accuracy 

Additional analog neural network layers

Additional analog optimizers

Custom network architectures and 
dataset/model zoos

Integration with the cloud

Hardware demonstrators


