

Deep learning acceleration: A killer application for in-memory computing?

Abu Sebastian Distinguished Research Staff Member IBM Research - Zurich

Outline

Introduction

- Deep learning
- In-memory computing

Deep learning based on computational phase-change memory

- Phase-change memory and synaptic emulation
- DL inference and training
- In-memory compute core
- Device-level innovations

Applications beyond conventional DL

- DNN + "something"
- Spiking deep neural networks

Outline

Introduction

- Deep learning
- In-memory computing
- Deep learning based on computational phase-change memory
 - Phase-change memory and synaptic emulation
 - DL inference and training
 - In-memory compute core
 - Device-level innovations
- Applications beyond conventional DL
 - DNN + "something"
 - Spiking deep neural networks

Deep (artificial) neural networks

DNNs meet the IT revolution

Mainstay of the AI portfolio of almost all IT companies Translation Search ranking News feed Face recognition Content understanding

DNN's Computational Efficiency Problem

Training Image recognition model Dataset: ImageNet-22K Network: ResNet-101

4 GPUs 16 days ~385 kWh

For reference: 1 model training run is Approx. 2 weeks of home energy consumption https://arxiv.org/abs/1708.02188

- Deep learning is computationally intensive
- Time consuming even with high-performance computing resources
- Power consumption prohibitive for applicability in domains such as IoT

Key driver for innovations in computing systems

In-memory computing

- Perform "certain" computational tasks in place in memory
- Achieved by exploiting the physical attributes of memory devices
- Can we viewed as a sub-category of processing in memory (PIM) or compute in memory (CIM)
- At no point during computation, the memory content is read back and processed at the granularity of a single memory element

FOCUS

Check for updates

Abu Sebastian 💿 🖾, Manuel Le Gallo 💿, Riduan Khaddam-Aljameh and Evangelos Eleftheriou

Memory devices and applications for in-memory

nature

nanotechnology

computing

Outline

- Introduction
 - Deep learning
 - In-memory computing
- Deep learning based on computational phase-change memory
 - Phase-change memory and synaptic emulation
 - DL inference and training
 - In-memory compute core
 - Device-level innovations
- Applications beyond conventional DL
 - DNN + "something"
 - Spiking deep neural networks

Phase-change memory

Commonly used phase change materials

Wuttig & Yamada, Nature Materials (2007) Burr et al., JETCAS (2016)

- A nanometric volume of phase change material between two electrodes
- "WRITE" Process
 - By applying a voltage pulse the material can be changed from crystalline phase (SET) to amorphous phase (RESET)
- "READ" process
 - Low-field electrical resistance

Disordered, high resistance Ordered, low resistance

Le Gallo & Sebastian, An overview of phase-change memory device physics, J. Phys. D: Appl. Phys.

Analog storage and accumulation behavior

Sebastian et al., J. Appl. Phys. (2018)

- Can achieve a continuum of conductance states
- A non-volatile integrator of pulses

Phase-change synapses

Abu Sebastian, IBM Research - Zurich

DNN inference with in-memory computing

Sebastian et al., VLSI (2019), Tsai et al., J. Phys. D: Appl. Phys. (2018)

The trained synaptic weights are mapped to an array of computational memory cores performing matrix vector multiply operations corresponding to each layer

Abu Sebastian, IBM Research - Zurich

DNN inference with in-memory computing

- Key challenge is the imprecision arising from conductance fluctuation, drift etc.
- A custom "additive noise training" procedure is essential to overcome this
- Experimental demonstration using PCM devices fabricated in 90nm CMOS technology

Joshi et al., "Accurate deep neural network inference using computational phase-change memory", Nature Comm. (2020) Abu Sebastian, IBM Research - Zurich

ResNet-32 on CIFAR-10

723,444 PCM devices (1T1R)

DNN training with in-memory computing

Nandakumar et al., ArXiv, 2017 Sebastian et al., VLSI, 2019

Abu Sebastian, IBM Research - Zurich

DNN training with in-memory computing

- Each synaptic weight mapped to two PCM devices (~400,000 PCM devices)
- Comparable test accuracy as FP32 training
- Negligible accuracy drop during inference after training

Nandakumar et al., "Mixed-precision deep learning based on computational memory", Front. Neuroscience (2020) Abu Sebastian, IBM Research - Zurich

Architecture of an IMC-based accelerator

Mixed-signal in-memory compute cores and system integration

Eleftheriou et al., IBM JRD (2019), Dazzi et al., MLSys Workshop @NeurIPS (2019) Boybat et al., Nature Comm. (2018) Khaddam-Aljameh et al., Proc. VLSI (2021)

https://www.research.ibm.com/artificial-

intelligence/ai-hardware-center/

Hermes: IMC compute core in 14nm CMOS technology

- 256x256 array of 8T4R unit cells
- PCM devices integrated in the back-end of 14nm CMOS chip
- Compact current controlled oscillator-based ADCs
- Local digital processing
- MVM performance: 10.5 TOPS/W and 16.5 TOPS/W/sq.mm.

Khaddam-Aljameh et al., Proc. VLSI (2021) (highlight paper)

Towards higher precision: Projected memory

Exact b_i value

- Modified PCM device concept
- Exploits the I-V characteristic of phase change materials
- Substantially lower drift and conductance fluctuations arising from 1/f noise
- Precision equal to 8-bit fixed-point arithmetic

Kim et al., Proc. IEDM (2013), Koelmans et al., Nature Comm. (2015), Giannopoulos et al., IEDM (2018)

Towards higher speed: Photonic in-memory computing

Feldmann et al., Parallel convolution processing using an integrated photonic tensor core, Nature (2021)

Outline

- Introduction
 - Deep learning
 - In-memory computing
- Deep learning based on computational phase-change memory
 - Phase-change memory and synaptic emulation
 - DL inference and training
 - In-memory compute core
 - Device-level innovations

Applications beyond conventional DL

- DNN + "something"
- Spiking deep neural networks

Hardware lottery

- Most of the algorithmic components for DNNs were in place decades earlier
 - Backprop (1963, 1976, 1988 (Rummelhart et al.)
 - CNNs (Fukushima & Miyake, 1982, LeCun et al., 1989)
- Several decades lost due to the lack of adequate hardware
- We need to ensure that good ideas are not lost or delayed this way
- What is next in deep learning?
- What role can IMC play going forward?

Hooker et al., The hardware lottery, ArXiv, 2020

The deep learning landscape

Computer vision

He et al, Deep residual learning for image recognition (2015)

Machine translation

Vaswani et al, Attention is all you need (2017)

DNN + Explicit HD associative memory

- Powerful tool for few-shot learning
- High-dimensional algebraic operations for variable binding?

Mimicking the brain: Deep learning meets vector-symbolic AI

To better simulate how the human brain makes decisions, we've combined the strengths of symbolic AI and neural networks.

Abbas Rahimi & Abu Sebastian, IBM Research Blog

Karunaratne et al., "Robust high-dimensional memory-augmented neural networks", Nature Comm. (2021) Abu Sebastian, IBM Research - Zurich

Efficient realization using IMC

Karunaratne et al., "In-memory hyperdimensional computing", Nature Electronics (2020)

Karunaratne et al., "Robust high-dimensional memory-augmented neural networks", Nature Comm. (2021)

- The high-dimensional explicit memory content (support vectors) stored in a PCM crossbar array
- The similarity between the input query vectors and support vectors computed through in-memory dot product operations

Spiking Neural Networks (SNNs)

Why SNNs?

- Asynchronous processing (Energy efficiency)
- Temporal codes (Ultra-low latency)
- Local event-based learning (Energy efficiency)
- Synaptic dynamics (Computational superiority in specific AI tasks?)

Pfeiffer and Pfeil, Front. Neuroscience (2018) Rajendran, Sebastian et al., IEEE SP Magazine (2019)

Inference in Dynamically Changing Environments

- Demonstration of an SNN surpassing ANNs in a specific task
- Purely neuromorphic and biologically modeled
- Cortical-like circuits can perform Bayesian inference on dynamic environments

Moraitis, Sebastian, Eleftheriou, Short-term synaptic plasticity optimally models continuous environments, ArXiv (2020)

IMC for SNNs

- IMC-based DNN acceleration can be easily extended to Spiking Neural Networks
- Synaptic efficacy and plasticity efficiently realized with physically instantiated synaptic arrays
- Potential to implement even more intricate synaptic dynamics and update rules

Nandakumar et al., "Experimental demonstration of supervised learning in spiking neural networks with phase-change memory synapses", Sci. Report, 2020

Wozniak et al., "Deep learning incorporating biologically inspired neural dynamics and in-memory computing", Nature Machine Intelligence, 2020

Moraitis et al., "Short-term synaptic plasticity optimally models continuous environments", ArXiv, 2020

Summary

- Deep learning is a key driver for innovations in computing systems
- New forms of computing such as in-memory computing (IMC) are being explored
- Attributes such as synaptic efficacy and plasticity can be implemented in-memory by exploiting the physical attributes of memory devices such as phase-change memory
- Iso-accuracy DNN inference and training is possible with IMC
- Recently fabricated mixed-signal IMC cores demonstrate the promise of this technology
- Concepts such as projected memory and photonic in-memory computing could significantly improve the computational precision and performance
- The IMC approach could also impact applications that transcend conventional DL such as memory-augmented neural networks and spiking neural networks

Acknowledgements

- In-memory computing group, IBM Research Europe
- Several other groups @ IBM Research Europe
- IBM AI Hardware Center (<u>https://www.research.ibm.com/artificial-intelligence/ai-hardware-center/</u>)
- New Jersey Institute of Technology, University of Patras, ETH Zürich, École polytechnique fédérale de Lausanne, RWTH Aachen, Oxford University, University of Münster

Analog AI Hardware Acceleration Toolkit

https://analog-ai.mybluemix.net/

and a start of the second	and the second s	
IBM Analog Hardware Acceleration Kit	n. n. n. h. M.	The second
The Open Source python toolkit for exploring and using the capabilities of in-memory computing devices in the context of artificial intelligence.		
Getting started CBHA		a a a Billion
Contraction of the second s	Classic and	

Current Capabilities Include:

- Simulate analog MVM operation including analog backward/update pass
- Simulate a wide range of analog AI devices and crossbar configurations by using abstract functional models of material characteristics with adjustable parameters
- Abstract device (update) models
- Analog friendly learning rule
- Hardware-aware training for inference capability
- Inference capability with drift and statistical (programming) noise models

Roadmap:

Integration of more simulator features in the PyTorch interface

- Tools to improve inference accuracy by converting pre-trained models with hardware-aware training
- Algorithmic tools to improve training accuracy
- Additional analog neural network layers

Additional analog optimizers

Custom network architectures and dataset/model zoos

Integration with the cloud

Hardware demonstrators