
< Date >UPMEM Copyright ©2021

UPMEM PIM
The first commercially available PIM-DRAM

Monday In Memory, 7th of June 2021
Fabrice Devaux, CTO @UPMEM

1

< Date >UPMEM Copyright ©2021

Who am I ?

● UPMEM CTO and Co-founder

● Chief architect of UPMEM’s architecture

● Work on PIM since 2013

Contact : fdevaux@upmem.com

2

https://fr.linkedin.com/in/fabrice-devaux-45294b67

< Date >UPMEM Copyright ©2021

The company
● Deep semiconductor & server system expertise - based in Grenoble, France

● Technology & product completed - 1st product - major IPs

● Fabless semiconductor business model deployed

● Deliveries of PIM modules in US, China and Europe

● Active PIMaaS datacenter for customers & labs

● Tens of successful use cases & prime labs collaborations

3

< Date >UPMEM Copyright ©2021

Some terminology

 In array computing Flash (MYTHIC and others), research on exotic NVM)

 In die computing (1) DRAM: UPMEM, SAMSUNG, Neuroblade

 Stacked die computing (1) Academic papers around HMC (but HMC now dead)

 Academic papers + some companies toying with the concept

 in storage computing Flash (NGD system and others) (regular FLASH chips + FPGA/ASIC)

 (1) sometime referred to as 'in memory computing', sometime as 'near memory computing'

4

PIM: different meanings for different people...

 DIMM level computing

< Date >UPMEM Copyright ©2021

UPMEM PIM DRAM (1/2)
 8 x 32-bit CPU added to a 4Gb DRAM die:

● First Gen: 8 x CPU @450MHz, 8 x 64 MB banks (1 CPU for 1 bank)
● Second Gen: 8 x CPU @600MHz, 16 x 32 MB banks (1 CPU for 2 banks), secure Enclave

 Multi-threaded CPU:

● In order execution at the thread level

● out of order execution between threads when executing DMA instructions

 Offering/Roadmap:

● 1st Gen: 24 hardware threads, scalar in production

● 2nd Gen: 16 hardware threads, scalar in design

● 3rd Gen: 32 hardware threads, 2 way superscalar planning
5

< Date >UPMEM Copyright ©2021

UPMEM PIM DRAM (2/2)
No instruction cache, but a 24 KB instruction memory

➔ Instructions can be loaded from DRAM through DMA instructions

No data cache, but a 64 KB Work RAM

➔ Data can be loaded/stored from/to DRAM through DMA instructions

➔ DMA instructions do not stop pipeline execution for the non-concerned threads

➔ Caches and threading do not fit well

➔ Caches would be difficult (big & slow) to implement on a DRAM process

6

< Date >UPMEM Copyright ©2021

A proprietary ISA ?
 Retargeting an open source compiler is possible (thanks LLVM)

 90% compatibility is not interesting - last 10% could be difficult to achieve due to DRAM process

limitation

 Mainstream ISA are designed to cover a very large design space:

● From MCU (scalar in order) to server Multi Core (superscalar out of order)

● Possibilities on DRAM process far more limited

 A somewhat specialized ISA adapted to constraints, allow for more performances

7

< Date >UPMEM Copyright ©2021

UPMEM Approach
➔ on die processing

➔ standard cell synthesis and custom SRAM and register files

➔ processing done at a bank granularity

➔ unaltered bank

➔ only bank connection extended / modified

➔ usage of a mainstream protocol (DDR4)

 SAMSUNG : same approach for their FIM, Function In memory (HBM2 instead of DDR4)

8

Do you want to do DRAM PIM for real ? Don't mess with the array !

< Date >UPMEM Copyright ©2021

Key properties
● Scalable ad nauseam

○ Only the host can access the totality of the memory

○ Each DPU can only access its associated memory

● No burden of establishing new interchip communications

9

● LLVM / CLANG based SDK

● Proprietary ISA for ease of implementation

● C and RUST programmable

● No OS support inside the DPU (no OS needed

in the first place)

● BUT Software debug support

< Date >UPMEM Copyright ©2021

Current applications
● Genomics

● Analytics

● Search

● Database

 New targeted Applications

● IA

● Security

10

< Date >UPMEM Copyright ©2021

Genomic Pipeline Acceleration
GATK (reference) = ~20h on CPU platforms

● Today UPMEM PIM on par with 8 GPUs

(Nvidia solution) at 45

● Tomorrow faster than 8 FPGA (Illumina

solution)

11

Mapping + Variant calling execution time

< Date >UPMEM Copyright ©2021

Genomic Pipeline TCO consideration

➔ 5-7x lower TCO (3 years)

➔ 9x less energy consumption than GPUs

➔ 5x less energy consuming than FPGAs

12

< Date >UPMEM Copyright ©2021

Further considerations
When running the genomic PIM application on 2x x86 4115 + 2560 DPUs @450MHz

● 90% (~55 MB) of memory used by each bank (max 64 MB)

● 0,9 instruction/cycle for DPUs in average

● DPUs occupied at 72% in average

● 160 GB/s of PIM bandwidth (7% of its full capabilities)

● The host is used at 21%

13

< Date >UPMEM Copyright ©2021

Benefit example: Index Search

14

● Document database search over a PIM

architecture

● Partnership with a global US-based search

engine leader to improve one of their

worst-case: a chain of 5 words query in a

document database (12M+ text

documents, 120GB index)

● Preliminary Comparisons with Apache

Lucene show a 30x acceleration

< Date >UPMEM Copyright ©2021

Many workloads accelerated

15

● Genomics (INRIA, SKKU, Industry leaders)
● Image processing + Fourier transforms (NCKU)
● Graph Algorithms, Security (ETH)
● Swapping, search compression/decompression (UBC, UCR)
● In-Memory database (SAP)
● Key Value Store, recommendation algos (UBC, GAFAM)
● Machine Learning (ETH, IBM, UBC, RIT, INPG, US Air Force, Samsung)
● Spacecraft computing (ESA)
● Security (Orange, Morgan State U.)
● Hardware, hybrid architecture (NCSU, EPFL)
● PIM friendly OS & Compilers (U. of Edinburg, Yonsei U.)

< Date >UPMEM Copyright ©2021

Design Technical challenges
● Slow transistors

● Low routing density

● No IP offering

● No standard cells

● No SRAM generators

● No established design flow

16

< Date >UPMEM Copyright ©2021

System Technical challenges
● BIOS adaptation

● Cache coherency (lake of)

● Undocumented behaviours of big server chips

○ Sometime doing unexpected things

● Power management

17

< Date >UPMEM Copyright ©2021

What NOT to do on DRAM ? (1/2)
Analog processing (a.k.a. electric charge sharing) on DRAM not feasible

Reason: the charge to share is already barely readable when not shared

● If the charge was easily readable, DRAM designers would reduce the capacity, increasing

the density, until the charge becomes barely readable

● The window for analog computing on DRAM closed a long time ago.

● Too much of a technology development and risks to be realistically envisioned.

18

< Date >UPMEM Copyright ©2021

What NOT to do on DRAM ? (2/2)
Adding logic at the sense amplifier level:

● DRAM array are always heavily repaired (no pristine DRAM for more than a decade)

○ Processing logic to deal with repair of a DRAM array is unrealistic

● The design of sense amplifiers is extremely constrained due to the pitch of the bit lines they

are sampling

● Perimeter overheads

○ Operators spread across the array (first level sense amplifiers) would induce connection

overheads

○ A complete CPU is connected only once with its corresponding DRAM array.

19

< Date >UPMEM Copyright ©2021

Reflexions on technological trends (1/2)
● For 20 years, new non-volatile memory are about to disrupt the market every 6 months

○ In array processing on such technology would be multiplying risk by risk

● A memory capable of accelerating calculation or an accelerator embedding memory ?

○ High density memory enhanced with PIM capability

■ Still useable as a memory in itself

■ UPMEM, SAMSUNG

○ Lower density memory, specialized for a given calculation (IA)

● Just another way of implementing a given acceleration, no longer an actual memory

20

< Date >UPMEM Copyright ©2021

Reflexions on technological trends (2/2)
● Thermal challenge on processing with stacked logic

○ reliability: thermal cycling fracturing TSV

● price & manufacturability challenge

○ HBM successful, but limited to high end (expensive) market

21

< Date >UPMEM Copyright ©2021

How to start working with PIM
➔ SDK with simulator and documentation are available at:

https://sdk.upmem.com/

➔ Browse code and all PIM use cases on our github:

https://github.com/upmem/

➔ Start your project on our PIM datacenter or order your own PIM DIMMs

contact@upmem.com

22

https://sdk.upmem.com/
https://github.com/upmem/
mailto:contact@upmem.com

